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A simple method is proposed to design PI controllers for unstable first order plus
time delay systems with a zero. The method is based on (i) matching the coefficient of
corresponding first power of s in the numerator and that in the denominator of the closed
loop transfer function for a servo problem and (ii) by specifying the initial (inverse)
jump. This method gives simple equations for controller settings in terms of model pa-
rameters. Simulation results are given for robust performance of the controller for uncer-
tainty in the value of the unstable pole and zero. The performance of the controller is
evaluated by simulation on a CSTR with non-ideal mixing carrying out an enzymatic re-
action.
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Introduction

Methods of designing PI controllers for stable
FOPTD model are based on stability analysis,1,2

constant open loop transfer function,3 pole place-
ment method,4 stable inverse of the model5 and syn-
thesis method.6 The design of PI controller for un-
stable FOPTD model has attracted attention re-
cently.7–10 The performance specifications that are
normally obtained for stable FOPTD model cannot
be obtained for unstable systems. The methods for
designing PID controllers for unstable FOPTD
systems are given by the modified Ziegler –
Nichols method,7,8,11 IMC method,12 pole placement
method,13 Optimization method,10,14 two degrees of
freedom method15,16 and synthesis method.17 In all
the above procedures, the design methods are some-
what complicated. Recently, a simple method is
proposed by Chidambaram et al.18 to design PID
controller for stable FOPTD by equating the coeffi-
cient of the corresponding powers of s in the nu-
merator and that in the denominator of the closed
loop transfer function for a servo problem. Perfor-
mance of the controller designed by this method is
shown to be similar to that of Ziegler-Nichols
method.

Since the performance specifications for stable
systems can not be met for the unstable systems,
Chidambaram et al.18 have used one tuning parame-
ter, � (i.e. each term in the numerator is equal to �
times that of the denominator). The performance of
the controller designed by the method is signifi-
cantly better than that of pole placement method.
Later Chidambaram and Padma Sree19 have ex-
tended the method to integrating system with dead

time, and the performance of the controller de-
signed is significantly better than that of the optimi-
zation method proposed by Visioli14.

The performance of the controller is limited by
the presence of an unstable zero. Methods of de-
signing PI controllers for stable systems with unsta-
ble zeros are available.20,21 The closed loop re-
sponse of such systems show large initial inverse
response. In the present work, the simple method18

is extended to design PI controllers for unstable
systems with a zero. The transfer function with un-
stable pole and unstable zero occurs in modeling of
enzymatic reaction in CSTR with Cholette’s
non-ideal mixing model,22 in modeling of fluid cat-
alytic reactors23 and in modeling a CSTR for carry-
ing out auto-catalytic reaction. Since the system
with a zero shows an initial (inverse response in
case of an unstable zero) jump, it is proposed in the
present controller design method to use this value,
and it is also proposed to match coefficient of
power of s in numerator with that of denominator of
closed loop transfer function for a servo problem.

The proposed method

Unstable system with an unstable zero

Let us consider a unstable first order system
with a positive zero [kp Gp = kp (1 – p s)/(� s – 1)].
Let us use a PI controller. The closed loop transfer
function relating the output variable (y) to the set
point (yr) is given by

y/yr = kc kp (1 – p s) (�I s + 1)/[�I s (� s – 1) +

+ kc kp (1 – p s) (�I s + 1)] (1)
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y(t) at t = 0 gives the value of the inverse jump.
From the initial value theorem, we know that y(t) at
t = 0 can be obtained from the limiting value of
value of [s y(s)] as s tends to infinity.

[s y(s)] = – [kc kp p /(� – kc kp p)] = – � (2)

Lt s � �

From eq (2), we get

kc = � � / [(1 + �) kp p] (3)

The overshoot and settling time for systems
with positive zero is large. Hence, the numerator
term of the coefficient of s equals to � times that of
the corresponding denominator term. By doing so,
we get

kc kp (�I – p) = � [–�I + kc kp (�I – p)] (4)

From eq(4), we get

�I = kc kp p (1 – �)/[kc kp (1 –�) + �] (5)

For an unstable system we can specify the
value for �. The limits of � and � can be obtained
by using Routh array stability criteria for the char-
acteristic equation of the system as � > 0

� > [� �/ (� � – � p –p)] (6)

For stability � should be greater than 0. But if
the initial jump is allowed to be small, the over-
shoot will be large. Basically we have to compro-
mise between initial jump and overshot. We can get
the starting value of � from eq. (3) as � = [M / (1 – M)]
where M = kc kp (p/�). Taking the limiting value of
kc kp = 1, we get � = [p / (� – p)]. Therefore, the
starting value of � should be greater than [p / (� – p)]
for unstable systems. � value is tuned greater than
the value obtained from the RHS of eq (6). The
value of � dictates the value of kc and the value of �I

depends both on � and �.

Unstable FOPTD system and with
an unstable zero

Let us consider unstable first order plus time
delay system with a positive zero. The transfer
function of the process is given by kp Gp = kp (1 – p
s) e–Ls / (� s –1). Let us use a PI controller. The
closed loop transfer function relating the output
variable (y) and set point (yr) is given by

y/yr = kc kp (1 – p s) (�I s + 1) e–Ls/[�I s (� s – 1)

+ kc kp (1 – p s) (�I s + 1) e–Ls] (7)

In the above equation we shall remove exp (–Ls)
term in the numerator for further analysis, since this
will only shift the corresponding time axis. Using
Pade’s approximation for exp (– Ls) in the denomi-
nator, the order of the numerator is same as that of

the denominator. y(t’) at t’ = L gives the value of
the inverse jump. From the initial value theorem,
we know that y(t’) at t = L can be obtained from the
limiting value of value of [s y(s)] as s tends to in-
finity.

[s y(s)] = – [kc kp p /�] = – � (8)

Lt s � �

From eq (8), we get

kc = � � / [kp p] (9)

By equating the coefficient of powers of s of
the numerator with that of � times the denominator
we get the following equation.

kc kp (�I – p + 0.5 L) = � [–�I + kc kp (�I – p – 0.5 L)] (10)

From eq (10), we get

�I = kc kp[p (1 – �) – 0.5L (1 + �)]/[kc kp(1 – �) + �] (11)

The limits of � and � can be obtained by using
Routh array stability criteria for the characteristic
equation of the system as � > 0

� > [� �/ (� � – p)] (12)

From the analysis of the closed loop system it
can be shown that the initial jump is less for system
with delay than system without delay. From the sta-
bility analysis � should be greater than zero. It is
suggested to get the starting value of � as follows.
From Eq.(9), we get � = kc kp (p/�). Using the limit-
ing value of kc kp = 1, � = (p/�). Therefore, the start-
ing value of � should be greater than (p/�) for un-
stable systems. � is tuned greater than the value �
obtained from the RHS of eq(12).

Similar analysis for a stable zero gives the fol-
lowing conditions and equations for controller set-
tings as shown in Table 1. System with a stable zero
gives a positive initial jump and the overshoot is
large.

Set point weighted PI controller

Systems with unstable poles with a stable zero
give a large overshoot. Stable systems with unstable
zero gives a large initial jump/undershoot. Use of a
set point weighted PI controller reduces the over-
shoot and the initial jump. The PI control law for
set point weighting parameter is given by

u(t) = kc [(� yr – y) + (1/�I s) �e dt] (13)

In the present work, method of calculation of
setpoint weighting parameter (�) for unstable sys-
tem with a zero is proposed by extending the
method suggested by Chidambaram24 for the sys-
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tem without zero. For the systems without any zero,
Chidambaram 24 has derived equations for � as

� �I = �e,c � (14)

where � is the damping coefficient and �e,c is recip-
rocal of the natural frequency of the closed loop
system. For the system without any zero, the nu-
merator of the closed loop system contains only the
term (� �I + 1). For the systems with a zero
the numerator consists of two terms (� �I + 1) and
(1 ± ps). [+ sign for a stable zero and – sign for an
unstable zero]. The two terms can be combined as
[(� �I ± p)s + 1]. It can be easily shown from the
work of Chidambaram25 that the following equation
holds good:

(� �I ± p) = �e,c � (15)

Hence, the value of setpoint weighting parame-
ter is calculated as:

� = (�e,c � + p) / �I (for an unstable zero) (16a)

� = (�e,c � – p) / �I (for a stable zero) (16b)

Since �e,c and � can be obtained by dominant
roots, it is thus easy to calculate the set point
weighting parameter.

Simulation results

Case study 1

Let us consider a first order unstable system
with a positive zero. kp = 1, � = 1 and p = 0.5. For a
value of � = 2 and the value of � from the RHS of
eq (6) is 4. � value is varied as 4.4, 4.8 and 5.2. The
corresponding value of kc [from eq (3)] is 1.333 and
�I [from eq (5)] are 17, 9.5 and 7 respectively. Servo
response of the system is shown in Fig. 1. Since the
initial jump and overshoot are significantly large,
setpoint weighted PI controller is used. Set point
weighting parameter is calculated from eq (16a) as �
= 0.1841. Fig 1 shows that the set point weighted PI
controller reduces the initial jump (from – 2 to – 0.2)

and overshoot (from 2.6 to 1.2) significantly. The PI
controller is designed for nominal value of p.
Whereas, while simulating we use + 20 % or – 20 %
perturbation in p. Fig. 2 shows the robust perfor-
mance. Similar response is obtained for uncertainty
in model parameters � and separately in kp also.
Since the system under consideration cannot be sta-
bilized by a proportional controller, standard Ziegler
– Nichols type tuning method cannot be used to
compare the performance of the proposed method.

Case study 2

Let us consider a first order unstable system
with a positive zero and with a delay. kp = 1, � = 1,
p = 0.25 and L = 0.25. For a value of � = 0.4, the
value of � obtained from the RHS of eq (12) is
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T a b l e 1 � Conditions and equations for PI settings for unstable system with a stable zero

System Transfer function model Conditions Equation for PID settings

Unstable first order
system with a
stable zero

kp (1 + p s)/(� s – 1)
1<� <0 (T1)

[� �/ (� � + � p – p)] < � < 1 (T2)

kc = ��/[(1 – �) kp p] (T5)

�I = kc kp p (� – 1)/[kc kp (1 – �) + �] (T6)

Unstable FOPTD
system with a
stable zero

kp (1 + p s) e–Ls / (� s –1)
� > 0 (T3)

� >[� �/ (� � – p)] (T4)

kc = � � / [kp p] (T7)

�I = kc kp [p (1 – �) +

+ 0.5 L (1 + �)]/[kc kp (� – 1) – �] (T8)

T(1) – T(8) are referred to as equation numbers.

F i g . 1 � Servo response of the system (1 – 0.5 s)/(s – 1) : kc

= 1.333
Solid �I = 17, dot : �I = 9.5, dash : �I = 7,
dot-dash : �I = 9.5 � = 0.1841



2.67. � value is varied as 2.72, 2.8 and 2.933. The
corresponding value of kc [from eq (9)] is 1.6 and �I

[from eq (11)] are 44.75, 18.5 and 9.75 respectively.
Servo response of the system is shown in Fig 3. Set
point weighted PI controller [� = 0.1718 obtained

from eq (16a)] significantly reduces undershoot
(from 0.4 to 0.045) and overshoot (from 2.65 to 0),
as shown in Fig. 3. Robustness of the controller un-
der parameter uncertainty in p, is shown in Fig. 4.
Similar results are observed for uncertainty in pa-
rameters �, kp and L separately.

Case study 3: Application to a CSTR
with non-ideal mixing

Let us consider an isothermal CSTR with the
reaction rate given by [–k1 c/(1 + k2 c)2]. The
non-ideal mixing is described by Cholette’s model.
Here n is the fraction of reactant feed that enters the
zones of the perfect mixing and m is the fraction of
total volume of the reactor where reaction occurs
[i.e., (1 – m) fraction of the volume is dead zone].
The transient equation for the reactor is given by
Liou and Chien25

dc/dt = (nQ/mV) (cf – c) – [k1 c/ (1 + k2 c)2] (17)

nc + (1 – n) cf = ce, at t = 0, c = c0 (18)

Here c is the concentration of the reactant in
the well mixed reactor zone and ce is the concentra-
tion of the reactant in the exit stream. The con-
trolled variable is ce and manipulated variable is the
feed concentration cf. For the present simulation
study, we consider n = m = 0.75, k1 = 10 s–1, k2 =
10 kmol m–3, V = 10–3 dm3.

This particular rate form [–k1 c /(1 + k2 c)2] has
been extensively studied26 and its applicability to
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F i g . 2 � Robustness of the controller for uncertainty in p
for the system (1 – 0.5 s)/(s – 1). kc = 1.333
�I = 9.5 solid : p = 0.5, dot : p = 0.6, dash : p = 0.4

F i g . 3 � Servo response of the system (1 – 0.25 s) e –0.25 s/(s
– 1) : kc = 1.6
Solid : �I = 44.5, dot: �I = 18.5, dash : �I = 9.75,
dot-dash : �I = 18.5 and � = 0.1718

F i g . 4 � Robustness of the controller for uncertainty in p
for the system (1 – 0.25 s) e –0.25s/(s – 1)
kc = 1.6 �I = 18.5Solid : p = 0.25, dot : p = 0.3,
dash: p = 0.2



heterogeneous and enzyme catalyzed reactions has
been demonstrated. For cf = 3.288 kmol m–3, we get
ce = 1.8 kmol m–3 and c = 1.304 kmol m–3 and
linearization of nonlinear equation around this nomi-
nal operating point gives the transfer function model
as 	ce(s)/ 
cf(s) = 2.21(1 + 11.133 s)/(98.32 s – 1).
We have assumed a measurement delay of 20 sec in
the derivation of above transfer function model. PI
controller designed by using simple method with �
= 0.3 and � = 1.2 times the value obtained from eq
(T4) (i.e. 1.93) gives kc = 1.2 and �I = 94.74. The
performance of the controller on the nonlinear sys-
tem for a step change in ce from 1.8 to 1.9 is shown
in Fig. 5. Set point weighting parameter calculated
by eq (16b) is 0.1517. Fig. 5 shows that set point
weighted PI controller reduces the overshoot signif-
icantly. The performance of the controller for regu-
latory problem (Q is changed from 0.03333 · 10–3 to
0.3366 10–3 m3 s–1) is shown in Fig 6.

Conclusions

A simple method is proposed for PI settings for
an unstable FOPTD system with a zero. The pro-
posed method is used to design controller for vari-
ous transfer function models and also applied to de-
sign controller for non-ideal CSTR, carrying out a
reaction having reaction rate of the form [–k1 c /(1 +
k2 c)2]. Set point weighted PI controller signifi-
cantly reduces undershoot and overshoot. The pres-
ent method is robust for uncertainty in the model
parameters.

N o m e n c l a t u r e a n d u n i t s

c – Reactant concentration in the reactor, kmol m–3

ce – Reactant concentration at the reactor exit,
kmol m–3

cf – Reactant concentration in the feed, kmol m–3

k1 – Reaction rate coefficient, s–1

k2 – Constant, m3 kmol–1

kc – Controller gain

kp – Process gain

L – Time delay, s

m – Fraction of the total volume of the reactor which
is perfectly mixed, dimensionless

n – Fraction of the feed entering the zone of perfect
mixing, dimensionless

p – inverse of process zero, s

Q – Feed flow rate, m3s–1

t – Time, s

V – Volume of the reactor, m3

y – Output

yr – Set point

� – Ratio of coefficient of s in the numerator to that
of denominator of closed loop transfer function

� – Set point weighting parameter

� – Process time constant, s

�I – Integral time, s
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F i g . 5 � Servo response of the non-ideal CSTR carrying
out a reaction with rate [–k1 c /(1 + k2 c)2]
kc = 1.2, �I = 94.74 (� = 0.3 and � = 1.93)
solid: � = 1 (no set point weighting); chain: � =
0.1517

F i g . 6 � Regulatory response of the non-ideal CSTR carry-
ing out a reaction with rate [–k1 c /(1 + k2 c)2]
kc = 1.2, �I = 94.74 (� = 0.3 and � = 1.93)
Q changed from 0.033 · 10–3 to 0.03366 · 10–3 m3 /s
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