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The higher order multilevel fuzzy controller was used to achieve an improvement of
the performance of the auto controller tuning. A tuning method with higher order multi-
level membership function is incorporated in a tuning formula based on the gain/phase
margins. The higher order fuzzy multilevel controller was made to vary with respect to
the plant's normalized dead time and system state error. The multilevel tuning actually
has made the fuzzy logic controller able to improve adaptation of the control environ-
ment. The higher order multilevel controller was settled faster by the first order multi-
level fuzzy logic controller in conjunction with less overshoot in set point control. As a
case study the two coupled chemical stirred tanks were used. Numerical solutions
showed validity of the proposed tuning methods. The obtained results were: illustrated
feasibility of using the higher order multilevel fuzzy controller to represent tuning for-
mula on the gain/phase margin for unstable zeros. The higher order multilevel controller
was improved robustness and sharpness to determine gain/phase margin. This work is
the first report in the literature showing the third order membership functions theory.
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Introduction

Recently, fuzzy logic controllers -FLC's have
been successfully applied to a wide range of indus-
trial processes as well as consumer products, and
show certain advantages over the conventional PI
and PID controllers.1–5 On the other hand, although,
fuzzy controllers have been extensively studied in
control engineering, there are still rather few theo-
retical proofs that can explain why FLC's can
achieve better performance.

Nowadays some studies have reported that, by
replacing a conventional PI controller with a non-
linear fuzzy PI controller, better performance and
local stability can be achieved. In these studies the
weighting coefficients of the fuzzy logic controllers
are calculated on the basis of a tuned conventional
PI controller.

Thus, some guidelines for designing an FLC
have been developed and theoretically proven.
These rules and formula are helpful in eliminating
the most time consuming trial-and-error procedures
in the synthesis and design of fuzzy control sys-
tems. A control effort will be partly or fully satu-
rated outside the universe of discourse.

In general, fuzzy logic control systems may
have better system performance, but the complexity
of the fuzzy rules base and the additional degree of
freedom increase the difficulty of design. It is true
that the weighting factors are functions of, both, pa-

rameter of the plant under control and the perfor-
mance index of the closed loop system. In the de-
sign method based on gain and phase margins, it is
also important to select a suitable equivalent
gain/phase margin contour, so as to obtain apprecia-
ble performance. In previous studies2–6 it was found
that it is difficult to select such a contour, and the
improper allocation of the equivalent contour will
degrade the system’s performance.

The multilevel fuzzy functions were applied7,8

to trouble recognition and different kinds of faults
classification. In previous papers9,10 phase plane
based analyses which was carried out showed that
the multilevel modified tuning actually made the
FLC able to adapt the control environment. The
multilevel fuzzy logic controller – MFLC is more
robust to handle nonlinear control problems.

This paper demonstrates higher order multi-
level fuzzy control system. The higher order multi-
level fuzzy logic controller – HMFLC shows the
best performance in comparing with MFLC, simple
FLC, and conventional PI controller with less over-
shoot in set point control. The HMFLC superior ro-
bustness was demonstrated. It could be used in the
other domain.11–15

As a case study it is used the plant of two cou-
pled reactors. Numerical simulations and experi-
ments are presented to show validity of the pro-
posed tuning methods. The improvement in system
performance is confirmed through, both, simulation
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and experimental results. The obtained results have
shown the advantages of the higher order multilevel
fuzzy logic controller in robustness and parameter
selectivity for nonlinear systems.

Desing and tuning of the multilevel
fuzzy PI controller with membership
function higher order

The block diagram of the fuzzy control system
is shown in Figure 1. The plant can be approxi-
mated by a first-order plus dead time function and
controlled by conventional PI controller. For the
simple fuzzy logic controller, which has two inputs
and one output, is developed the fuzzy PI controller
with four fuzzy rules. The error and the change and
error are defined as:
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the inputs of the fuzzy controller are the normalized
error and the normalized change of error. The mem-
bership function 2(x)3,4 of the fuzzified inputs are
of triangular shape (Appendix 1). The two fuzzy re-
gions positive (P) and negative (N) for two input
variables and the corresponding membership func-
tions are defined as:
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for negative fuzzy labels,
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here is x e ei � ( , ).� Consequently, the four simple
fuzzy control rules, being used in FLC, are as follow:

IF (e is N) AND (�e is N) THEN
(change in control is N)

IF (e is N) AND (�e is P) THEN
(change in control is Z)

IF (e is P) AND (�e is N) THEN (5)
(change in control is Z)

IF (e is P) AND (�e is P) THEN
(change in control is P),

where the fuzzy labels of the control outputs are
singeltons defined as P = 1, Z = 0 and N = 1.

Using the center of gravity defuzzification
method (Appendix 1), the control output of the type
of FLC can be obtained, when the normalized error
or the normalized change of error are inside the uni-
verse of discourse (Appendix 2), as:
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where w u� is the scaling factor of the fuzzy control
output. It can be concluded that this kind of basic
fuzzy logic controller is a linear PI controller in
structure, with a nonlinear proportional gain Kc(F)

when inside the universe of discourse, and integral
Ti(F). The control effort will be partly or fully satu-
rated outside the universe of discourse. In the design
method based on gain and phase margins, it is also
important to select a suitable equivalent gain/phase
margin contour, and the improper allocation of the
equivalent contour degrade the system performance.
To overcome this difficulty, multilevel fuzzy func-
tions are included in the gain phase/margin tuning
method, such that the equivalent gain/phase margin
contour can be simply fixed. Fig.1 shows the struc-
ture of the fuzzy control system.

Remark 1. For every fuzzy subset A in the
fuzzy set A a limited sequence fq with f-cut is deter-
mined, i.e.

0 1
1 2 1

� � ��� �
�

f f fq q qpq
(7)

The membership function of the second order
(Appendix 3) can be structured by the composition
by several membership function of the first order,
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F i g . 1 – Structure of the control loop



In regard to the q-th group of parameter (q = 1)
follows:

IF f x i1
2 1� �2 ( )

THEN gain is setting, (9)
IF 0 2

1� �2 ( )x fi

THEN phase is setting.

These two production rules, Eq.(9), improve
design parameter selection.

Remark 2. The membership function of the
third order can be structured by the composition of
several membership functions of the second order,
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In regard to the q-th group of parameter (q = 1)
follows:

IF f x i1
3 1� �2 ( )

THEN gain/phase margin is accurate. (11)

This production rule, Eq.(11), shows proper al-
location of the equivalent gain /phase margin con-
tour.

Description of the case study

The case study consists of two chemical stirred
tanks as shown in Fig. 2. The basic task of the ex-
periment is to control the reaction mixture level in
the second stirred tank of the coupled system. The
basic control strategy is to control the reaction mix-
ture level in the second tank by varying the input
flow to the first tank. The measurement for liquid
level is read in, and control signal is written out.
The control algorithm is realized by computer pro-
gramming. Fig. 2 shows the process plant .

The plant could be linearized, simplified and
modeled by a first order plus dead time structure.
The tuning of the fuzzy PI controller is based on an
approximated model of the plant, it is similar to the
method of tuning a conventional PI controller. It is
assumed that the process under control can be mo-
delled as first order plus dead time dynamics, and
that all the three plant parameters (time constant,
open-loop gain and dead time) can be obtained:
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For this kind of plant, by using the phase/gain
margin tuning formula for a conventional PI con-
troller and substituting the equivalent proportional
gain and integral time the following equations (13)
can be obtained:
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where r0 is the set point changing range, Am is spe-
cified gain margin, 6m is the specified phase margin
and wp is the resulting phase crossover frequency.

In equation (13), a0 is design parameter which
can be selected from 0 to 1. Since:

a w e w ee e0 0�max( | | , | | ),� � (14)

It is easy to find out that this design parameter
is related to certain points on the normalized phase
plane and this can be interpreted as an equivalent
gain/phase margin contour (Fig. 3).

According to the tuning formula, the weighting
factors we, w�e, w�u will be fixed and thus
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where K c
F
�0

( ) is the gain of the fuzzy logic controller

when the system is at its contour.2,9,10 Clearly, the
fuzzy controller-FLC has the property that its is
fixed and is variable in terms of different e and �e.
The property of a0 can be used to allocate the
equivalent gain/phase margin contour so as to mod-
ify the closed loop system’s performance. The mul-
tilevel fuzzy controller -MFLC9,10 goes further in
sensitivity varying gain or phase, alternatively ac-
cording to equation (9) in terms of different e and
�e. The higher order multilevel fuzzy logic control-
ler-HMFLC shows higher robustness and sharpness
to allocate the equivalent gain/phase margin con-
tour, according to equation (9) and (11) so as to
modify the closed loop system performance. This
improvement of conventional MFLC9,10 with
HMFLC is very important for the system with un-
stable zeros. Fig. 3 shows equivalent gain/phase
margin contours for different a0.

The main contribution of this paper is the tun-
ing of a higher order multilevel fuzzy logic control-
ler. The membership function third order defines
common action of design parameters.

The resulting HMFLC appears to be a varying
parameter PI controller which is a realization of the
fuzzy control rules equations (5) and fuzzy parame-
ters selection rules equations (7) to (11). Although
qualitatively it is known that ao should be larger
when the normalized dead time L/( is large, the de-
sired variation of ao may not be monotonic against
L/(.

The switching line of the fuzzy control action
on normalized phase plane is:

w e we u� � (16)

On the switching line the control action is zero.
When the system state is across the switching line,
the control action will change its sign.

Results and discussion

To verify effectiveness of the higher order mul-
tilevel fuzzy modification simulations experiments
were carried out, in which conventional fuzzy logic
and multilevel fuzzy logic with gain/phase margin
tuning, were compared with the higher order multi-
level fuzzy tuning formula. All the controllers were
tuned using the same pair of gain and phase margin
specifications of 3 and 45°, since this pair gives a
good system response to both set-point change and
load disturbance.

The first examined example is to control a plant
with small normalized dead time. Controller parame-
ters in the simulation to G s s s( ) exp( )/( )� � �3 1 50
for �t = 1 are shown in Table 1. The simulation
results are shown in Fig. 4. From this results, it
is found that the conventional PI controller in-
troduces large overshoot in the closed loop system,
while the fuzzy controller makes the closed loop
system a bit sluggish. With multilevel fuzzy tuning
algorithm, the closed loop system has only a slight
overshoot, and converges quickly to the set point.
The values of the second order membership func-
tions show which parameters can be fixed or va-
ried. For example, if the value of membership func-
tion second order for gain margin is higher from
the value of membership function second order
for phase margin, then gain is varied and phase
margin is fixed. The improvement multilevel fuzzy
of settling time is around 40 % in comparison with
conventional fuzzy PI. Also, better system respon-
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F i g . 3 – Equivalent gain/phase margin contours for differ-
ent a0 T a b l e 1 – Controllers parameters in the simulation to

G(s) = exp(–3 s)/(1+50 s)

Controller Kc Ti we w�e w�u

PI 12.42 9.05 – – –

FCL(a0 = 0) – – 0.200 18.1 2.21

MFLC – – 0.200 18.1 2.21

HMFLC

F i g . 4 – Closed loop responses (G(s) = exp(–3 s)/(1 + 50 s))



se to load disturbance can be observed. The im-
provement higher order multilevel order tuning
algorithm in comparison with multilevel PI is in
proper allocation of the equivalent gain/phase mar-
gin contour. The membership function third order is
determined gain/phase margin resolution. The closed
loop system has shown higher robustness.

The second example is to control a plant with
the same dead time and time constant as the first
case, but with the different steady state gain of 10.
The simulation results show that the closed-loop
system responses are almost identical to those of
the previous case, except for those to load dis-
turbance. Controller parameters for this case in
the simulation to G(s) = 10 exp(–3 s) / (1 + 50 s)
for �t = 1 are given in Table 2.

The third example is to control a plant that has
a large normalized dead time. Controller parameters
in the simulation to G(s) = exp(–90 s) / (1 + 50 s)
for �t = 1 are given in Table 3. The simulation re-
sults are shown in Fig. 5. These results show that
both conventional PI and fuzzy controlled systems
have evident overshoots when set point changes.
On the other hand, the mulitilevel fuzzy algorithm
controls the system with only slight overshoot, and
thus the system can be settled quickly at the set
point. The improvement in settling time is 45 %.
The higher order multilevel fuzzy systems improve
allocation equivalent to phase/gain margin contour.
The system responses to load disturbance are simi-
lar for the three controllers.

The experimental results for the chemical plant
in Fig 2 are shown in Fig.6. In order to control the
reaction mixture level in the second reactor it was
varying the input flow speed in the first reactor.

The system is a nonlinear second order plant.
For the design of controllers using gain and phase
margin specifications, the plant can be linearized,
simplified and modeled by first order and dead
time. For a second order plus dead time plant, a
fuzzy PID can be used. Thus a simplified plant
model is G(s) = 1.55 exp(–5 s) / (1 + 395 s).

The experiments are carried out during a pe-
riod from 0 to 1200 s. There are set point changes
at time instants of 30. Moreover, there are two load
disturbances at time instant 880 and 1100, which is
a 6 cm3 s–1 flow introduced and removed to the first
reactor to emulate the change in inflow. The speci-
fied gain and phase margin are 3 and 45°, respec-
tively. The sampling interval is 1s.

Conclusions

The obtained results show that the performance
of the higher order multilevel fuzzy controller is the
best among those of three fuzzy kinds of control-
lers: The system reaches the set point faster with
less overshoot, hence the settling time is the shortest,
especially for unstable regions. Generally, fuzzy
control is nonlinear in nature and is more robust to
handle nonlinear control problem.

The underlying idea of the multilevel fuzzy
logic controller is to associate the integral action
and the proportional action of the fuzzy logic con-
troller with the normalized dead time and state er-
ror. The multilevel fuzzy logic controller gives al-
most identical system response in all circumstances.

With higher order multilevel fuzzy logic closed
– loop, performance for systems with either large or
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T a b l e 2 – Controllers parameters in the simulation to
G(s) = 10 exp(–3 s)/(1+50 s)

Controller Kc Ti we w�e w�u

PI 1.242 9.05 – – –

FLC(ao=0) – – 0.200 18.1 0.221

MFLC – – 0.200 18.1 0.221

HMFLC – – 0.200 18.1 0.221

T a b l e 3 – Controllers parameters in the simulation to
G(s) = exp(–90 s)/(1+50 s)

Controller Kc Ti we w�e w�u

PI 0.313 45.05 – – –

FLC (ao=0) – – 0.200 90.1 0.0139

MFLC – – 0.200 90.1 0.0139

HMFLC – – 0.200 90.1 0.0139

F i g . 5 – Closed loop responses (G(s) = exp(–90 s)/(1 + 50 s)

F i g . 6 – The experimental closed-loop responses
(G(s) = exp(–11.2 s)/(1 + 395 s)



small normalized dead times are improved. The
higher order multilevel fuzzy logic controller shows
higher robustness and sharpness, and improves pro-
per allocation of the suitable equivalent gain/phase
margin contour. The improper allocation of the
equivalent contours degrade the system perfor-
mance. This paper is the first report in the literature
showing the third order multilevel fuzzy controller.
This controller can be applied in the other domain
for those processes when biochemical reaction
occurs.

N o t a t i o n

A – fuzzy subset
A – fuzzy set
e – error
�e – change of error
f – experienced factor (0.8)
L – dead time
L/( – normalized dead time
N – negative fuzzy label
q – number of sequences
P – positive fuzzy label
r0 – set point
t, T – time, integral time, respectively
K – proportional gain
u – fuzzy control output
x – input variable
Y – output variable
w – weighting factor

S u b s c r i p t

(F) – fuzzy

I n d e x

c – control
e – error
�e – change of error
i – integral
q – number of sequences (fragments)
p – crossover frequency

G r e e k s y m b o l s

�0 – design parameters
Am – specified gain margin

21(..) – fuzzy membership function of the first order

22(..) – fuzzy membership function of the second order

23(..) – fuzzy membership function of the third order

5m – specified phase margin

( – time constant of the plant
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APPENDIX 1

Fuzzy set theory

Fuzzy sets are sets in which members are presented as ordered
pairs that include information on degree of membership.1,2 Let,
introduce a fuzzy subset A of traditional set

U(u1, u2, uk).

A = [ui, 2A(ui)], ui = e{A} (A1.1)

where 2A(ui ) is degree of membership ui in the subset A, and

2A(ui) = e{0,1}. (A1.2)

If 2A(ui) = 0 then ui is not member of the subset A, and (A1.3)

If 2A(ui) = 1 then ui is member of the subset A, full
membership. (A1.4)

A classical set of, say k elements, is a special case of a fuzzy
set, where each of those k elements has 1 for the degree of the
membership, and every other element in the classical set has a
degree of membership 0, for each reason you don't bother to
list it.
Fuzzy logic is combination of multivalued logic, probability
theory, and artificial intelligence. It incorporates the impreci-
sion inherent in many real world systems, including human
reasoning, by allowing linguistic variable classifications such
as big, slow, near zero or too fast. Unlike binary logic, fuzzy
systems do not restrict a variable to be a member of a single
set, but recognize that a given value may fit to varying degrees,
into several. For example, a speed of 60 km h–1 may be moder-
ately slow, fast or too fast depending on the other factors such
as speed limit or road conditions.
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APPENDIX 2

Fuzzy set operations

Consider a union of two traditional sets and an element that be-
longs to only one of these sets. If these sets are treated as fuzzy
sets this element has degree of membership equal 1 in one case
and 0 in the other, since it belongs to one set and not the other.
Let put this element in the union. It should be, to look at the
two degree of membership namely, 0 and 1, and pick the higher
of the two, namely 1. In the other words, the maximum values
of its degrees of membership within the two fuzzy sets, form-
ing a union.
For example,

x + y = max (x, y) (A2.1)

or

0 + 1 = max (0, 1) = 1 (A3)

1 + 1 = max (1, 1) = 1

Analogously, the degree of membership of an element in the
intersection of two

fuzzy sets is the minimum or the smaller value of its degree of
membership individually in the two sets forming the intersec-
tion. For example,

x y = min (x, y) A(2.2)

or

0 × 1 = min (0, 1) = 0

1 × 0.8 = min (1, 0.8) = 0.8.

In the fuzzy recording method a fuzzy membership value is ap-
pended to the need value, so this process can be refereed to as
fuzzification. The main difference between the crisp forecast
and the fuzzy forecast is that the former predicts not only the
class value but also the values corresponding to the member-
ship function. From the resulting qualitative variables continu-
ous signal can then be regenerated and then subsequently be
used as inputs to other quantitative or qualitative variables.
This regeneration process is called defuzzification.

APPENDIX 3

Modelling approach by multilevel fuzzy functions

Fuzzy set theory, in effect, is a step toward a rapprochement
between the precision of classical mathematics and the perva-
sive imprecision of the real world. Fuzziness of a phenomena
steams from the lack of clearly defined boundaries.

Let set A and subset Aj
'

A, Aj
'(j = 1, 2, …, m), A'j e(A) (A3.1)

be the output, global observation, set and subset, which contain
various states to be diagnosed. Since output states in complex
processes are often inconclusive, fuzzy set and fuzzy subsets,
are applicable.

Assume that the observed field is a measurable output vector
space consisting of n vectors:

Xi = (x1, x2, …, xn) (A3.2)

where Xi is the i-th vector with which A can be ambiguously
predicted, i.e., the subset Aj' can be determined according to
their values of

Xij(i = 1, 2, …, n, j = 1, 2, …, m).

Suppose that m fuzzy subsets are divided into q groups by vari-
ous characteristics such as the kinds of parameters:

A = (A11', …, A1p'), …, (Ak1', …, Akp') (A3.3)

where p mi
i

k

�
�

#
1

.

The reason why some subset in fuzzy set are combined into a
group is, that there are some connections between them to be
considered.

Any fuzzy subset A'j of Xi is characterized by a membership
function 2A j

which associates with every member xi, i.e.,
2A j

(xi) representing the degree of membership of xi to fuzzy
subset A'j.

A definition for the construction of a membership function is
described as follows:

For every fuzzy subset (A'q1,…, A'qp)q for 1 < q < k in the fuzzy
set A given A = (Al1, …, Alp1), …, (Akl, …, Akp)k by a limited se-
quences f with f-cut is determined, i.e.:

0 < fq1 < fq2 < fq3 < … < fq p–1 < 1 (A3.4)
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Corresponding membership function. The determination of the
corresponding membership function must have the following
relationship:

IF fqp < �qp(xi) < 1 THEN xi e{A'qp}q

IF fq p–2 < �q p–1(xi) < fq p–1 THEN xi e{A'q p–1}q (A3.5)

IF 0 < �qf(xi) < fq1 THEN xi e{A'ql}

where xi e{A'j} means that it is satisfied by the condition in
which the states A' appears. Therefore, the membership func-
tions in the sense of j.
Eq.( A3.5) are divided into several levels, such as 2q having pq
levels. Since it is possible the 2A8j

is a function of multivariable
{X(i = 1, 2, …, n)}, the membership function of the first order
is denoted.
Analogously, the membership function of the first order can be
structured into a membership function second order. The mem-
bership function of the second order

2 9Aj
2 (xd, …, xg), 1 < d < g < n

can be generated by the composition of several membership
functions of the first order, i.e.:

2 29 9
�

�#A i i A i
i d

n

j j
x w x2 ( ) ( ) (A3.6)

where wi is weight factor whose value depends on the degree of
the relationship between xi and A9j, and satisfied with

wi
i d

n

�

# �1 (A3.7)

It is obvious that the membership functions of the second order
have some similar characteristics with the membership func-

tion of the first order, i.e. corresponding to the q-th group of
subsets

(Aq l,……, Aq p)q, 1 < q < k (A3.8)

there are relationships:

IF fq p < �2q p(xi) < 1 THEN xi e{A'q p}q

IF fq p–2 < �2q p–1 (xi) < fq p–1 THEN xi e{A'q p–1}q (A3.9)

IF 0 < �2q 1(xi) < fq p THEN xi e{A'q 1}.

These membership functions can be structured into a member-
ship function of the third order. The membership function of
the third order 2 9 9 �A A l bj

x x3 ( , , ) , d < l < b < g can be generated

by the composition of several membership functions of the sec-
ond order i.e.:

2 29 9
�

�#A i i A i
i p

q

j j
x w x3 2( ) ( ) (A3.10)

where wi is a weight factor whose value depends on the degree
of the membership between xi and A'j, and satisfied by

wi
i l

b

�

# �1 (A3.11)

The membership functions of the third order have some similar
characteristics with the membership function of the second or-
der, i.e. corresponding to q-th group of subsets (Aq1, …, Aq p)q,
1 < q < k there are relationships given by

IF fq p < �3q p(xi) < 1 THEN xi e{A'q p}q

IF fq p–2 < �3q p–1(xi) < f THEN xi e{A'q p–1}q (A3.12)

IF 0 < �3q 1(xi) < fq1 THEN xi e{A'q l}.
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