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The optimization models of chemical engineering processes are generally nonlinear
and mixed integer, nonlinear in structure, and contain several equality and inequality
constraints and bounds on variables.

Mixed Integer Nonlinear programming problems (MINLP) can be solved using ei-
ther gradient methods or stochastic methods. Gradient methods need to separate the
problem to Mixed Integer Linear Programming (MILP) and Nonlinear Programming
(NLP) problems and some special formulations where the continuity or convexity has to
be imposed.

In this work, an algorithm (SARAN) that was based on a simulated annealing algo-
rithm of Corana1 was developed to solve MINLP problems. Then the algorithm and some
alternatives for the basic steps of a simulated annealing were tested for 100 sequences of
pseudo random numbers using 11 MINLP test problems. Finally the results were compared
with the results of the M–SIMPSA2 for small and medium scaled problems.
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Introduction

There are two main approaches to solve NLP
and MINLP problems.

– Gradient Approach
– Stochastic Approach
Various gradient algorithms have been de-

scribed in the literature. The common property of
deterministic algorithms3,4 is to separate the original
MINLP problems into sub–problems. On the other
hand stochastic methods do not necessarily separate
the problem into sub–problems. However, various
problem–independent heuristics related to search
interval compression and expansion and to shifting
strategies are required for their effectiveness. Also
these methods require the application of successive
relaxations, which may substantially increase the
effort in identifying feasible regions and obtaining
the global optimum.

The simulated annealing algorithm is also a
stochastic method based on stochastic generation of
solution vectors and employ similarities between
the physical processes of annealing and the optimi-
sation problems.

The physical process of annealing

The aim of the process is to find the atomic
configuration that minimizes internal energy. For a

given configuration, a random move is carried out
by randomly picking a molecule and moving it in a
random direction for a random distance. The new
configuration is then accepted or rejected according
to an acceptance criterion, based on the Boltzman
function, (1):
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where �E is the change in the energy of the config-
urations, kB is the Boltzman constant, and T is the
temperature of the system. The acceptance of a new
configuration depends on �E and temperature. T is
reduced to reach a lower energy state. The low tem-
perature is not a sufficient condition to find ground
states of matter. The cooling process should be ac-
complished slowly, otherwise the resulting crystal
will have many defects or the substance may form a
glass with no crystalline order.

Optimisation by simulated annealing

In simulated annealing, the value of the objec-
tive function is analogous to the energy of the sys-
tem and the aim is to minimize the value of the ob-
jective function, where the values of the continuous
and discrete variables represent a particular config-
uration of the system. The behaviour of the system,
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subject to such a neighbourhood move is deter-
mined from the value of the two successive values
of the objective function.

There are two important approaches in the ap-
plication of the simulated annealing to the continu-
ous variables.

– The hybrid of random search and accep-
tance–rejection criteria of simulated annealing algo-
rithms.

– The hybrid of simulated annealing algorithm
and nonlinear simplex algorithm

Both of these two approaches have the follow-
ing critical steps.

– Estimation of the initial temperature of the
system.

– Acceptance of points generated.
– Cooling Schedule
– Termination of the constant temperature pro-

cess and termination of the cooling process
– Dealing with constraints
Simulated annealing algorithms can be devel-

oped using alternative schemes for these critical
steps.

Initial value of temperature

An initial value of the annealing temperature
for a physical process of annealing and optimiza-
tion algorithms are based on annealing as an effec-
tive parameter for the optimisation path. The value
of the initial temperature for a physical process de-
pends on the properties of the system and can be es-
timated experimentally. Analogously, the initial
value of the temperature for an optimisation prob-
lem is estimated by the observation of the behav-
iour of the problem using a specified time, deter-
mined experimentally. The alternative schemes are
available to estimate the initial temperature. Some
of them were used in this work.

– Prosenjit and Diwekar5 proposed any temper-
ature value that satisfies the following inequality
(2) as the initial temperature:
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The vector �F is obtained by evaluating the
change in the objective function value for a large
number (e.g., 100) of neighbourhood moves. This
procedure has been applied to the optimal design
problem of heat exchangers.

– Aarst and Korst6 and Aarst and Van Laar-
hoven7 proposed any temperature value that satis-
fies the following equality (3) as the initial tempe-
rature.
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m1 and m2 are the number of successful and un-
successful moves, respectively. �f + is the average
increase in the objective function value for m2. The
total number of moves to determine an initial tem-
perature is proposed as 100 · N.

For example, (105) may be proposed as a start-
ing point of the temperature to determine the initial
temperature.

Acceptance criteria

Two types of acceptance criteria have been
proposed in literature.

– Metropolis algorithm accepts all downhill
moves. It accepts uphill moves with a probability p
which depends on temperature and the change of
the objective function values evaluated in succes-
sive iterations (4). Metropolis accepts all the moves
with a probability of 1 at high temperatures.
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– The method of a nonequilibrium Metropolis
accepts uphill moves with a probability p which de-
pends on temperature and the change of the objec-
tive function values evaluated in successive itera-
tions similar to the Metropolis algorithm. Addition-
ally, the inner loop of the annealing algorithm is
terminated and cooling is applied when a downhill
move occurs in the objective function.

– The Glauber algorithm accepts all moves at a
high temperature with 0.5 probabilities (5). If the
temperature is reduced, the probability acceptance
of downhill moves remains constant at 1 in the Me-
tropolis algorithm. The value of probability in-
creases from 0.5 to 1 in the Glauber algorithm. On
the other hand, the acceptance probability of an up-
hill move decreases from 0.5 to 0 in the Glauber al-
gorithm,
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Annealing schedule

Two types of annealing schedules have been
proposed.

– The exponential type–cooling schedule,8

where a constant multiplicative factor is employed,
can be used to obtain a new temperature (6).
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T Tk k� �1 � (6)

� is a temperature decrement factor which lies
in the range of 0–1.

– Aarst and Van Laarhoven7 proposed an alter-
nating cooling schedule. (7)
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�(Tk) is the standard deviation of the objective
function at Tk. � is the speed parameter lying on the
range of 0–1. The value of � varies depending on
the equilibrium or the nonequilibrium application
of Simulated Annealing with an order of 103 (0.01,
10).

Termination criteria for constant temperature
step and cooling step

The constant number of moves or nonequili-
brium comes together when constant number of
moving approach can be used for the constant tem-
perature step. In this approach, if the new function
value is lower than the previous one, temperature is
reduced without reaching equilibrium; otherwise
the approach of constant number of moves is ap-
plied.

The process of cooling can be terminated using
the following criteria

– The constant number of temperature levels

Tk � 1 (8)
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– �C can’t be improved for several tempera-
ture levels.

Dealing with constraints

– The Cardosa Approach. All infeasible points
are penalized assuming a very large positive value
for a minimization problem or a very large negative
value, otherwise.9 The method is an infeasible path
method. This means that infeasible points may be
replaced by the new infeasible points, except that
they are now centred on the best vertex and obey all
bound constraints.

– A feasible path method may be used. This
means, that feasible points may be replaced by fea-
sible points, and the objective function is evaluated
only for the feasible points. This approach may lead
to inaccurate results.

Procedure and results

In this work, an algorithm based on the algo-
rithm of Corona,1 was developed. The algorithm of
Corona was used to solve unconstrained problems.
This algorithm was modified to solve constrained
MINLP problems, and 11 MINLP problems were
used to test the criteria that were used in the basic
steps of the algorithm. Then these problems were
utilised to compare the performance of the algo-
rithm with the algorithm of M–SIMPSA2 for
MINLP problems. The 9 test problems of Cardosa
et al2 and 2 test problems of Duran4 and the initial
values for these problems, are given below.

1. (M. F. Cardosa et al.2 and is also given in
Kocis and Grossmann3, Floudas et al.10 and Ryoo
and Sahinidis11). There is a local optimum at {y, x,
Z} = {0, 1.118, 2.236} and nonconvexities arise in
the first constraint. The global optimum is at (y, x,
Z} = {1,0.5,2}

Minimize Z x y� �2
Subject to:

125 02. � � �x y x y� � �16 0.

L�0 L U� �x y�{ , }0 1

2. (M. F. Cardosa et al.2 and is also given in
Kocis and Grossmann3 and Salcedo et al.12). The
global optimum is at (y, x1, x2, Z} = {1, 1.375, 0.375,
2.124}.

Minimize Z y x x�� � �2 1 2

Subject to:

x x
1 2 02� ��e( ) � � � �x x y1 2 0

L
T � ( . , )05 0 U

T � ( . , )14 10 L U� �x y�{ , }0 1

3. (M. F. Cardosa et al.2 and is also given in
Floudas et al.10). There are nonconvexities because
of the first constraint. The global optimum is at (y,
x1, x2, Z} = {1, 0.94194, –2.1, 1.07654}.

Minimize Z y x�� � � �0 7 5 05 081 1
2. ( . ) .

Subject to:

� � ��e( . )x x1 0 2
2 0

x y2 111 1 0� � �.

x y1 112 02 0� � �. .

L
T � �( . , . )02 222554 U

T � �( , )1 1

L U� �x y�{ , }0 1

4. (M. F. Cardosa et al.2 and is also given in
Kocis and Grossmann3, Floudas et al.10, Salcedo12

and Ryoo and Sahinidis11). There are nonconvexi-
ties because of the equality constraints. The global
optimum is at (y1, y2, y3, Z} = {0, 1, 1, 7.667180}
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Minimize Z x x y y y� � � � �2 3 15 2 051 2 1 2 3. .
Subject to:

x y1
2

1 125� � .

x y2
1 5

215 3
.

.� �

x y1 1 16 0� � �.

1333 3 02 2. x y� � �

� � � �y y y1 2 3 0

L
T �{ , )0 0 L� x y�{ , }0 1 3

5. (M. F. Cardosa et al.2 and is also given in
Kocis and Grossmann3, Diwekar et al.13 and Diwe-
kar and Rubin14). It is related to the selection
among two candidate reactors for minimizing the
cost of producing a desired product. The global op-
timum is at (y2, x1, x2, x3, Z} = {0, 1, 1, 7.667180}

Minimize Z y y x x x� � � � �7 5 55 7 6 51 2 1 2 3. .
Subject to:

y y1 2 1� �

x xx
4

0 5
6091 1� �. ).e

x xx
5

0 4
7081 2� �. ).e

x x x6 7 3 0� � �

x x4 5 10� �

x y1 110 0� �

x y2 210 0� �

x y6 120 0� �

x y7 220 0� �

L
T � ( ; ; ; ; ; ; )0 0 0 0 0 0 0

U
T � ( ; ; ; ; ; ; )10 10 40 20 20 10 10

L U� �x y�{ , }0 1 2

6. (M. F. Cardosa et al.2 and is also given in
Salcedo12). This represents a quadratic capital bud-
geting problem. It has four binary variables and fea-
tures bilinear terms in the objective function. The
global optimum is at (y1, y 2, y3, y4, Z} = {0, 0, 1, 1,
–6}

Minimize
Z y y y y y y y y� � � � � � �( )( )1 2 3 4 1 2 3 42 3 2 5 3 6

Subject to:

y y y y1 2 3 42 3 4 0� � � � � y�{ , }0 1 4

7. (M. F. Cardosa et al.2 and was also given in
Yuan et al.15, Floudas et al.10, Salcedo3 and Ryoo
and Sahinidis11). It has nonlinearities in, both, the
continuous and binary variables. The global opti-
mum is at (y1, y2, y3, y4, x1, x2, x3, Z} = {1, 1, 0, 1,
0.2, 0.8, 1.907878, 4.579582}

Minimize Z y y y� � � � � � �( ) ( ) ( )1
2

2
2

3
21 2 1

� � � � � � � �log( ) ( ) ( ) ( )y x x x4 1
2

2
2

3
21 1 2 3

Subject to:

y y y x x x1 2 3 1 2 3 5 0� � � � � � �

y x x x3
2

1
2

2
2

3
2 55 0� � � � �.

y x1 1 12 0� � �. y x2 2 18 0� � �.

y x3 3 25 0� � �. y x4 1 12 0� � �.

y x2
2

2
2 164 0� � �. y x3

2
3
2 425 0� � �.

y x2
2

3
2 464 0� � �.

L
T � ( , ; )0 0 0 U

T � ( . ; . , . )12 18 25

L U� �x y�{ , }0 1 4

8. (M. F. Cardosa et al.2 and is also given in
Berman and Ashrafi16). The global optimum is at
(y1, y2, y3, y4, y5, y6, y7, y8, Z} = {0, 1, 1, 1, 0, 1, 1, 0,
0.93634}

Minimize Z x x x�� 1 2 3

Subject to:

y y y1 2 3 1 0� � � 


y y y4 5 6 1 0� � � 


y y7 8 1 0� � 


3 2 3 2 3 2 10 01 2 3 4 5 6 7 8y y y y y y y y� � � � � � � � �

x y
1 1 01 1� � . 02 5. y 015 3. y

x y
2 1 005 4� � . 02 5. y 015 6. y

x y3 71 002� � . 006 8. y

L
T� ( , ; )0 0 0 U

T� ( ; ; )1 1 1 L U� �x y�{ , }0 1 8

9. (M. F. Cardosa et al.2 and is also given in
Wong17). The global optimum is at (y1, x1, x3, Z} =
{78, 27, 27, 32217.4}

Maximize Z x y x�� � �5357854 08356891
2

1 3.

� �37 29329 407921411. .y
Subject to:

x a a x y a x y a x x4 1 2 3 2 3 2 1 4 1 3� � � �

x a a x y a y y a x5 5 6 3 2 7 2 1 8 1
2 90� � � � �
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x a a x x a x y a x x6 9 10 3 1 11 1 1 12 1 2 20� � � � �

L
T� ( , , )27 27 27 U

T� ( , , )45 45 45 L U� �x x x1 2 3, ,

L
T� ( , )78 78 U

T� ( , )102 102 L U� �y

10. (Marco A. Duran and Ignacio E. Gross-
mann4). It is related to a synthesizing process. It is
the one of simultaneously determining the optimal
structure and operating parameters for a chemical
process.

Minimize Z y y y x x� � � � � �5 6 8 10 71 2 3 1 3
� � � � � � � �10 7 18 1 192 1 101 3 2 1 2x x x x xln ( ) . ln ( )

Subject to:

� � � � � � �08 1 096 1 08 02 1 2 3. ln ( ) . ln ( ) .x x x x

� � � � � � � �ln ( ) . ln ( )x x x x y2 1 2 3 31 12 1 2 0

x y2 12 0� � x x2 1 0� �

x x y1 2 22 0� � � y y1 2 1 0� � �

L
T�( , , )0 0 0 U

T�( , , )0 0 0 L U� �y y 0 1 0 1�( , , )

11. (Marco A. Duran and Ignacio E. Gross-
mann4). This is related to a synthesizing process.

Minimaze Z y y y y� � � � �5 8 6 101 2 3 4
� � � � � � � �6 7 4 5 10 15 155 6 7 8 1 2 3y y y y x x x
� � � � � � � �80 25 35 40 15 354 5 6 7 8 9

1x x x x x x xe

� � � � � � �e( / . ) log( ) log( )x x x x2 1 2
3 4 565 1 90 1

� � �80 1 1206log( )x

� � � �x x x4 7 9 0 � � � �0 4 0 4 15 05 6 8. . .x x x

016 016 12 05 6 8. . .x x x� � � x x3 408 0� �.

� � �x x3 40 4 0. e yx1 10 1 01� � �

e x y2 1 2
210 0/ . � � x y7 310 0� �

08 08 10 05 6 4. .x x y� � � 2 2 2 10 04 7 9 6x x x y� � � �

x y5 610 0� � x y6 710 0� �

x x y3 4 810 0� � � y y4 5 1 0� � �

y y3 8 0� � x y1 1
0 5125� �( . ) .

x y2 3
1 1 53 15� �( . )( / . )

L
T � ( ; ; ; ; ; ; ; ; )0 0 0 0 0 0 0 0 0

U
T � ( ; ; ; ; ; ; ; ; )2 2 1 2 2 2 2 1 3 L U� �x

Discussion

M–SIMPSA is a hybrid of the simulated an-
nealing and nonlinear simplex and has a potential
risk to reach the global optimum. For, the simplex
moves may actually destroy the global convergence

properties of simulated annealing. Taking this risk
into account the proposed algorithm can be handled
as an alternative approach to solve constrained
MINLP problems.

The basic steps of the algorithm that was
shown schematically in figure 1 are explained
below:

1. The initial value of the pseudo tempera-
ture: The initial value was determined by using the
method of Aarst and Korst.6 The performance of
this method was compared with the method of
Prosenjit and Diwekar,5 and the calculated ratios
between the initial pseudo temperatures, the num-
ber of functions evaluated, and the error % com-
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F i g . 1 – The flowsheet of the proposed algorithm



pared with the values of the objective function in
global minimum, are given in table 1. The initial
values of the pseudo temperatures calculated by the
method of Aarst and Korst6 were greater than the
others. Therefore, this method causes the evalua-
tions of more functions. If only these parameters
are considered, the method of Prosenjit and
Diwekar5 has an advantage over the method of
Aarst and Korst.6 But the low initial values of
pseudo temperatures caused to converge to a local
minimum (Problem 6).

2. Generation of a new point: In the second
step of the algorithm, the test points were generated
using the following relations.

x x r ei i� � �1 v mh h

y u vi� � � �1
1LB INT( )sr

(10)

xi is the current optimum for the continuous
variables, r and u are random numbers in the inter-
vals� ��05 05. , . and 0, 1, respectively. eh is the vec-

tor of the hth coordinate direction and vmh is the
component of the step vector (vm) along the same
direction. LB and sr is the vector of the lower
bounds and search region for discrete variables.

3. The acceptance of the point generated:
The method of nonequilibrium Metropolis was pre-

ferred to decide the acceptance of the new point
generated. The nonequilibrium Metropolis algo-
rithm prevented the computational burden of the al-
gorithm for test problems. Although the nonequili-
brium Metropolis algorithm can lead to local op-
tima this effect has not been observed for the test
problems in this work.

4. Dealing with constraints: The constrained
problems are transformed into the unconstrained
ones using the following penalizing scheme,18

F x M f x( , ) ( )� �

� �
�
�
�

��

 
!
�

"���

##M g x h xj
j

n

i

m

[max( , ,( ))] ( )0 2 2

11

(11)

M is a positive penalty parameter. The value of
the penalty parameter can ideally affect the conver-
gence. M = 100 gave good results for the test prob-
lems. The algorithm is an infeasible path method
and uses all of the perturbed function values.

5. Termination criteria: The constant number
of moves and constant number of step adjustment
approaches, that were used, depend on the number
of variables used for constant temperature search.

The number of moves = 5 * the number of
variables

The number of step adjustment = 5 * the num-
ber of variables

Otherwise, the relation (9) was used to termi-
nate the cooling process.

The method of Corona was used to adjust the
value of the step reduction at the end of inner loop.

6. Annealing scheduling: The method of
Aarst and Van Laarhoven6 (7) was used to reduce
the pseudo temperature of the problem.

Conclusions

An algorithm was proposed for MINLP prob-
lems. It was based on the algorithm of Corona that
can solve only unconstrained continuous problems.
The nonequilibrium Metropolis method9 and a pe-
nalizing11 scheme were also adapted to prevent
computational burden and to improve the reliability
of the algorithm, respectively.

The proposed algorithm was applied to solve
several MINLP test functions published in litera-
ture. The performance of the algorithm is compara-
ble with the performance of the M–SIMPSA for all
ill conditioned problems. The average number of
function evaluations for 100 runs, and success per-
centages for eleven ill-conditioned MINLP test
problems, are given in table 2.
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T a b l e 1 – The ratios for initial temperatures and number of
functions evaluated and errors compared with the values of the
objective function in global minimum

Problem TiA/TiP NA/NP

Error

eA / %

Error

eP / %

1 1.00 1.33 0.05 0

2 95.36 1.46 0.02354 0.02354

3 71.11 0.49 0.386423 0.590782

4 4842931937 1.00 0.000261 0.000261

5 104.29 3.54 2.338343 24.98217

6 90.91 1.15 0.008565 0.262395

7 100.06 1.00 0 0

8 26.09 2.56 0.402176 1.236314

9 60.99 1.70 0.00466 0.05458

10 100.39 1.00 0.288589 0.288589

11 25.1 1.87 0.0048 0.056



The value for speed parameter was a constant
of 0.011 for all problems. This speed value provides
convergence to problems 5, 7, 9 to a local minimum
in 10, 30 and 6 times respectively per 100 runs. The
convergence times were increased to 92, 100, 100
for these problems reducing the value of speed pa-
rameter to 0.0007, 0.0011 and 0.0006, respectively.

The computer program developed in this work,
besides running the proposed algorithm based on
mentioned criteria, is open in the user interface to
try different criteria for the basic steps and compare
with the structure given in this paper.

N o m e n c l a t u r e

eA – Accuracy of convergence to the global minimum
for Aarst and Korst5 criteria, %

eD – Accuracy of convergence to the global minimum
for Diwekar method, %

eNEM – Accuracy of convergence to the global minimum
for nonequilibrium method, %

MINLP – Mixed Integer NonLinear Programming

N – Number of variables

NA – The number of function evaluations in Aarst and
Korst5 procedure in determining initial annealing
temperature

NAarst– The number of function evaluations in Aarst and
Korst5 procedure in reducing annealing temperature.

NCR – The number of function evaluations in constant
region reduction method

ND – The number of function evaluations in the
method of Diwekar to determine initial values of
annealing temperatures

NF – The number of function evaluations

NFeasible – The number of function evaluations in the
feasible path procedure

NInfeasible – The number of function evaluations in the
infeasible path a procedure

NKirkPatrick – The number of function evaluations in the
method of Kirkpatrick in reducing annealing
temperatures

NM – The number of function evaluations in the method
of Metropolis in accepting the points generated

NNEM – The number of function evaluations in the
method of nonequilibrium Metropolis in ac-
cepting the points generated

NESA – Nonequilibrium Simulated Annealing

NLP – Nonlinear Programming

TiA – The initial value of Pseudo annealing temperature
when the method of Aarst and Korst6 was applied

TiD – The initial value of Pseudo annealing tempera-
ture when the method of Diwekar was applied

�E – The change in the energy of the system

�F – The change in the value of objective function
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T a b l e 2 – The fraction of successes and the average number
of function evolutions (The success fractions (%) were given for
feasible path and infeasible path alternatives of M–SIMPSA)

Problem
M–Simpsa Saran

NF success NF success

1 16282 99 100 5671 100

2 14440 83 100 8873 100

3 38042 0 100 10920 100

4 577 100 ––– 2581 100

5 42295 100 100 113252 90

6 4477 100 ––– 568 100

7 63751 60 97 40316 70

8 15462 100 ––– 49813 100

9 33956 87 95 26743 94

10 257536 – – 225436 100

11 831149 – – 825154 95


